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Abstract

In this article, we consider the joint estimation of direction-of-departure (DOD) and direction-of-

arrival (DOA) information of maneuvering targets in a bistatic multiple-input multiple-output (MIMO)

radar system that exploits spatial time-frequency distribution (STFD). STFD has been found useful in

solving various array processing problems, such as direction finding and blind source separation, where

nonstationary signals with time-varying spectral characteristics are encountered. The STFD approach



to array processing has been primarily limited to conventional problems for passive radar platform that

deals with signal arrivals, while its use in a MIMO radar configuration has received much less attention.

This paper examines the use of STFD in MIMO radar systems with application to direction finding

of moving targets with nonstationary signatures. Within this framework, we consider the use of joint

transmit and receive apertures for the improved estimation of both target time-varying Doppler signatures

and joint DOD/DOA. It is demonstrated that the STFD is an effective tool in MIMO radar processing

when moving targets produce Doppler signatures that are highly localized in the time-frequency domain.

Keywords: radar signal processing; MIMO radar; direction finding; joint DOD/DOA estimation; time-

frequency analysis; moving target tracking.

1. Introduction

Multiple-input multiple-output (MIMO) radar is an emerging technology that has attracted sig-

nificant interest in the radar community [1, 2]. By emitting orthogonal waveforms from the

transmit array antennas and utilizing matched filterbanks in the receivers to extract the waveform

components, MIMO radar systems can exploit the spatial diversity and the higher number of

degrees of freedom to improve resolution, clutter mitigation, and classification performance. In

particular, a monostatic MIMO radar system exploiting colocated array antennas can provide

effective array designs to achieve an extended virtual aperture which becomes the sum coarray

of the transmit array and the receive arrays [2, 3]. A bistatic MIMO radar with respectively

colocated transmit and receive array antennas, on the other hand, is capable of jointly estimating

the direction-of-departure (DOD) and direction-of-arrival (DOA) of targets [4–7]. There are

various reasons motivating the use of bistatic radars, ranging from improving covertness to

achieving improved location accuracy [8]. In the MIMO radar context, the combined DOD



and DOA information allows triangulation of target locations. This is particularly important

in narrowband radar systems, such as over-the-horizon radar, which do not have a high range

resolution [9]. The joint transmit and receive beamforming offers improved interference/jamming

cancelation capability, which can be performed without the need for a priori information at the

transmitter. This is made possible since the transmit beamforming is performed at the receiver

[10].

Radar signals are often nonstationary with Doppler frequencies that may change slowly or

rapidly with time. This is the case of Doppler signatures that are generated due to target move-

ment and maneuvering. For those nonstationary signals, time-frequency distributions (TFDs) have

been widely used as a powerful tool for signal analysis, enhancement, and discrimination [11].

When used in array processing applications, time-frequency signal representations yield improved

signature detection, interference cancelation, direction estimation, and waveform recovery. In

particular, the development of spatial time-frequency distribution (STFD) has led to a new

paradigm for processing a large class of nonstationary signals in multi-sensor array applications

[12–24].

The STFD is defined by the STFD matrix, which includes the auto-sensor TFDs along its

diagonal and cross-sensor TFDs as off-diagonal elements. The STFD matrix is related to the

source TFD matrix by the spatial mixing matrix in a manner similar to the commonly used

formula in array processing problems using second-order statistics that relates the sensor spatial

covariance matrix to the source covariance matrix. This similarity has enables eigenstructure and

subspace methods to play a role in high-resolution DOA estimation of nonstationary sources.

It was shown in [19] that, by constructing an STFD matrix from the selected time-frequency



points of highly localized signal energy, the corresponding signal and noise subspace estimates,

as a result of signal-to-noise ratio (SNR) enhancement, become more robust to noise than their

counterparts obtained using the data covariance matrix. In addition, the selected time-frequency

points can pertain to a single or few sources, thus allowing the consideration of individual or

subset of the sources in the field of view. The separability of the source time-frequency signature

and the flexibility in time-frequency point set selection further increase the SNR and reduce the

mutual interference between the signals, yielding improved subspace robustness. Further, it allows

processing more sources than the number of sensors. A number of direction finding techniques

have been developed within the STFD framework to take advantages of the above properties

(e.g., [13–15, 17, 20]). These techniques have shown improved performance compared to their

conventional DOA approach counterparts.

The merits of time-frequency based DOA estimation can only be materialized through the

selection of appropriate time-frequency points in the construction of the STFD matrices. While

in some scenarios the selection of peak time-frequency points may be relatively easy, the problem

can be more challenging in other situations, e.g., when the signals are highly contaminated by

noise. A typical radar return signal is very weak with a low SNR. Therefore, it becomes necessary

to utilize the spatial diversity to enhance the time-frequency signature of the signals of interest

in the absence of knowledge of their directions. A simple example for achieving this purpose is

through averaging of the TFDs over all receive sensors [21]. The array averaged TFD also help

in identifying auto-term and cross-terms points [22, 23].

In this article, we consider the exploitation of STFD in bistatic MIMO radar applications. The

goal is to examine whether and how certain key advantages of the STFD, as described above,



are preserved in the context of MIMO radar and their dependency on the number of transmit and

receive antennas in bistatic MIMO systems. In particular, we deal with two important issues. The

first issue is the enhancement of auto-term TFDs in the presence of both cross-terms and noise to

obtain reliable auto-term identification. The second issue is the joint DOD and DOA estimation

within the time-frequency framework that allows target selection and discrimination through the

proper selection of time-frequency regions. It becomes clear that cross-term reductions, due to

the averaging operation of sensor TFDs, benefit from both transmit and receive array apertures,

whereas the noise reduction is determined by the number of virtual antennas. It is shown that

the joint DOD/DOA estimation performance is improved through time-frequency based target

discrimination when a closely separated target is eliminated from the evaluation.

In the presence of multiple targets, a bistatic radar is required to properly pair the estimated

DOD and DOA results. Several techniques have been developed to void or to automatically

obtain pairing operation [5–7]. In this article, we develop our time-frequency domain DOD/DOA

estimation technique based on the combined ESPRIT-MUSIC method [7], which only requires

two decoupled one-dimensional direction finding operations where the DOD and DOA are

automatically paired.

The remainder of this article is organized as follows. The MIMO radar signal model is

introduced in Section 2. The concept of STFD is reviewed in Section 3. The capability of

enhancing the auto-term TFD over cross-term TFD and noise through averaging over virtual

sensors is addressed in Section 4. Section 5 presents the joint DOD and DOA estimation in

the time-frequency framework. Simulation results, validating our analyzes and discussion, are

presented in Section 6.



The following notations are used in this article. A lower (upper) case bold letter denotes a

vector (matrix). E[·] represents statistical mean operation. (·)∗, (·)T , and (·)H respectively denote

complex conjugation, transpose, and conjugate transpose (Hermitian) operations. Re(·) represents

the real part operation of a complex variable, vector or matrix. ⊗ denotes the Kronecker product

and ⋄ denotes the Khatri-Rao product. In expresses the n× n identity matrix. Diag(x) denotes

a diagonal matrix using the elements of x as its diagonal elements, diag(X) a vector consisting

of the diagonal elements of matrix X, and vec(X) a vectorized result of matrix X. In addition,

CN×M denotes the complete set of N × M complex entries, [a]n denotes the nth element of

vector a, and [A]m,n denotes the (m,n)th element of matrix A. δn is the Kronecker delta function

which equals to 1 when n = 0 and 0 otherwise.

2. Signal model

Consider a bistatic MIMO radar system consisting of Nt closely spaced transmit antennas and Nr

closely spaced receive antennas. Denote S ∈ CNt×T as the narrowband waveform matrix which

contains orthogonal waveforms to be transmitted from Nt antennas over a pulse-repetition period

of T fast-time samples. We assume that the waveform orthogonality is achieved in the fast-time

domain. That is, by denoting si as the ith row of matrix S, si and sj are orthogonal for any

i ̸= j with different delays, and si is orthogonal to the delayed version of itself. We also assume

that si has a unit norm, i.e., SSH = INt .

Consider a far-field range cell where L point targets are present with DOD θl and DOA ϕl,

where l = 1, . . . , L. Then, the signal data received at the receive array corresponding to the



range cell over a pulse repetition period is expressed as the following Nr × T complex matrix,

X(t) = ArΓ(t)A
H
t S+N(t), (1)

where t is the slow time index, Ar = [ar(ϕ1), . . . , ar(ϕL)] and At = [at(θ1), . . . , at(θL)],

with ar(ϕl) ∈ CNr×1 and at(θl) ∈ CNt×1, respectively, denoting the receive steering vector

corresponding to DOA ϕl and the transmit steering vector corresponding to DOD θl. In addition,

Γ(t) = Diag[γ1(t), . . . , γL(t)] where γl(t) = ρl(t)e
j2πβ(fD,l(t),t) denotes the complex reflection

coefficient of the lth target during the tth pulse repetition period. The complex reflection co-

efficient is a function of the radar cross section (RCS), represented by ρl(t), and the phase

term, denoted as β(fD,l(t), t), which depends on the Doppler frequency fD,l(t) of the slow time

index t. Moreover, N(t) ∈ CNr×T is the additive noise matrix, whose elements are assumed to

be independent and identically distributed (i.i.d.) complex Gaussian random variables with zero

mean and variance σ2
n. To qualify expression (1), it is assumed that the steering vectors remain

unchanged during the entire slow-time processing period, which is often the case for far-field

targets. The nonstationary signatures are a result of the target maneuvering, represented by the

Doppler frequency fD,l(t).

The time-frequency analysis exploited in this article performs the best when the Doppler sig-

natures are highly localized in the time-frequency domain and are represented by their respective

instantaneous frequencies (IFs). For this reason, the RCS fluctuation is required to be constant

or slowly time-varying. In this article, we assume scan-by-scan RCS fluctuation (e.g., Swerling

target models 1, 3, or 0) [25], such that the RCS remains invariant during certain processing

time (e.g., a scan) or over the window length of the time-frequency kernel (as described in the

following section).



By post-multiplying (1) by SH and utilizing the orthogonality of the transmitted waveforms,

we obtain Y(t) ∈ CNt×Nr as

Y(t) = ArΓ(t)A
H
t + Z(t), (2)

where Z(t) = N(t)SH . Vectorizing Y(t) in (2) yields the following NtNr × 1 vector

y(t) = w(t) + z(t) = Aγ(t) + z(t), (3)

where w(t) = Aγ(t) is the noise-free portion of the signal vector,

A = At ⋄Ar =
[
a
[t]
1 ⊗ a

[r]
1 , . . . , a

[t]
L ⊗ a

[r]
L

]
, (4)

with a
[t]
l and a

[r]
l denoting the lth column of At and Ar, respectively. In addition, γ(t) =

diag(Γ(t)) = [γ1(t), . . . , γL(t)]
T , and z(t) = vec(Z(t)).

The noise component corresponding to the mth transmit waveform and the nth receive antenna

is given by zn,m(t) = [z(t)](m−1)Nr+n = ñn(t)̃s
H
m, where ñn(t) is the nth row of the receive noise

matrix N(t), and s̃m is the mth row of waveform matrix S, m = 1, . . . , Nt and n = 1, . . . , Nr.

Notice that we used (̃ ) to emphasize a row vector. It is clear that vector z(t) has a zero mean,

spatially white across the virtual sensors, and its covariance matrix can be shown to be σ2
nINtNr

because

E[zn1,m1(t)z
∗
n2,m2

(t)] = E
[
ñn1(t)̃s

H
m1

(
ñn2(t)̃s

H
m2

)∗]
= E[̃sm2ñ

H
n2
(t)ñn1(t)̃s

H
m1

] = σ2
nδn1−n2δm1−m2.

(5)

3. Spatial time-frequency distribution

The concept of STFD was developed in the context of the evaluation of quadratic TFDs to account

for nonstationary signals in a multi-sensor environment. STFD has solved various array signal



processing problems, including direction finding, blind source separation, and signal recovery

[12–23].

Assume that the time-frequency analysis takes place after waveform decompression. Therefore,

the nonstationarity only accounts for the targets’ Doppler signature over the slow-time domain.

In typical radar applications, Doppler frequencies due to target maneuvering are much smaller

than the carrier frequency, i.e., the slow-time waveforms can be considered to be narrowband.

Then, the discrete version of the Cohen’s class of auto-term quadratic TFD of signal x(t) is

defined as [26]

Dxx(t, f) =
∞∑

u=−∞

∞∑
τ=−∞

g(u, τ)x(t+ u+ τ)x∗(t+ u− τ)e−j4πfτ , (6)

where g(u, τ) is the kernel function. Different kernel functions are used to generate TFDs with

prescribed and desirable properties. For example, the pseudo Wigner-Ville distribution (PWVD),

which is used later in our simulations, exploits g(u, τ) = δuw(τ) as its kernel, where w(τ) is a

time-lag window function. In particular, the PWVD of x(t) with a rectangular window of length

H is expressed as

Dxx(t, f) =

(H−1)/2∑
τ=−(H−1)/2

x(t+ τ)x∗(t− τ)e−j4πfτ . (7)

Similarly, the cross-term TFD between two signals x(t) and y(t) is defined as

Dxy(t, f) =
∞∑

u=−∞

∞∑
τ=−∞

g(u, τ)x(t+ u+ τ)y∗(t+ u− τ)e−j4πfτ . (8)

Based on the above definitions of auto-term and cross-term TFDs, the discrete version of the

quadratic STFD matrix of signal vector y(t) can be defined as [12, 24]

Dyy(t, f) =
∞∑

u=−∞

∞∑
τ=−∞

g(u, τ)y(t+ u+ τ)yH(t+ u− τ)e−j4πfτ , (9)



where [Dyy(t, f)]m,n = D[y]m[y]n(t, f). The diagonal elements of Dyy(t, f) represent the auto-

sensor TFD terms of the data corresponding to the same receiver and transmit waveform, whereas

the off-diagonal elements are cross-sensor TFD terms between the data corresponding to different

virtual sensors.

Notice that the term auto-term may in general refer to either auto-sensor TFD term or auto-

component TFD term. To avoid confusion, we use the terminology auto-sensor term and cross-

sensor term to emphasize how to distinguish them from auto-target term and cross-target term.

We simply use auto-term and cross-term to refer to the latter.

Substituting (3) into the above expression, we obtain

Dyy(t, f) = ADγγ(t, f)A
H +ADγz(t, f) +Dzγ(t, f)A

H +Dzz(t, f). (10)

In the above expression, the first term in the right-hand side (RHS) represents the contribution

from the target returns, whereas the second and third terms at the RHS are the interaction

between the target return and noise, and the last term at the RHS is the auto-term of the noise

vector. Note that the time-frequency analysis maps one-dimensional (1D) time-domain signals

into two-dimensional (2D) time-frequency domain signal representations. For target signal return

whose Doppler signature follows an IF law, the respective auto-term TFD concentrates the

signal energy around the IF. On the other hand, the energy of the last three terms spreads over

the entire time-frequency domain. As a result, the effective signal-to-noise ratio (SNR) of the

target signal returns, when evaluated at the time-frequency regions around the signal IFs, can be

substantially improved. This property improves not only signal detection and Doppler signature

classification in noisy environment, but also signal subspace estimation and robustness [15, 19].

In addition, since the above expression is satisfied for all time-frequency points, the STFD matrix



can be evaluated using time-frequency regions which only include a subset of signal returns,

thus allowing better signal selection and discriminations for the joint DOD/DOA estimations.

Under the standard uncorrelated signal and noise assumption and the zero-mean white noise

property, the expectation of the cross-term STFD matrices between the signal and noise vectors

is zero, and it follows

E [Dyy(t, f)] = ADγγ(t, f)A
H + σ2

nINtNr . (11)

Equation (11) shows that the STFD matrix has a similar relationship to the covariance matrix

which commonly arises in array processing based on second-order statistics. It is clear, therefore,

that the subspace spanned by the principle eigenvectors of Dyy constructed over a selected time-

frequency region Ω0 is identical to that spanned by the columns of A0, where A0 denotes a

subset of A corresponding to the columns whose corresponding signal components are included

in the selected time-frequency region Ω0 (in particular, A0 = A when all the target signals are

included in the selected time-frequency region Ω0). This fact implies that, when dealing with

nonstationary signals, various array processing techniques can be straightforwardly applied in the

time-frequency framework to take advantages of signal enhancement and source discrimination,

as described above, which stem from the nonstationary properties of γ(t).

4. Time-frequency averaging over virtual sensors

As evident from the above discussion, the selection of time-frequency region with high signal

concentration amounts to SNR enhancement. Inclusion of time-frequency regions with only

noise or weak signal presence in direction finding, on the other hand, will reduce the effective

SNR and degrade the performance. Therefore, it is important to properly identify and select



the auto-term TFD regions for target selection/discrimination and SNR enhancement, so as to

improve DOD/DOA estimation performance. It has been shown in [19] that SNR enhancement

gained in the time-frequency domain is particularly important for data with relatively low signal

power, whereas target time-frequency signature discrimination is critical when the targets are

closely separated in the spatial domain. For both cases, time-frequency point selections should

be performed prior to the DOD/DOA estimations.

In this section, we examine the enhancement of the auto-term TFDs of the target signals

relative to noise and cross-term interference by averaging the auto-sensor TFD obtained at each

virtual antenna. This averaging is considered an effective technique for the identification of

auto-term and cross-term regions [21–23]. In the following two subsections, the effect of time-

frequency averaging is analyzed from the MIMO radar perspective in two aspects, namely, the

auto-term TFD enhancement over the cross-term TFD and the signal TFD enhancement over

the noise.

4.1. Autoterm TFD enhancement over crossterm

In this subsection, we focus on the auto-term enhancement in the presence of cross-terms.

Therefore, the presence of noise is ignored. The effect of noise is considered in the following

subsection.

Mathematically, averaging the TFDs obtained at each array sensor amounts to taking the trace

of the STFD matrix [18, 22, 23]. The diagonal elements of Dyy(t, f) represent the auto-terms

of the signals received at the NtNr virtual antennas, whereas the off-diagonal elements represent

the cross-terms between them. For most commonly used time-frequency kernels, the auto-terms



are real. These terms are also positive for meaningful time-frequency points where the signal

energy is concentrated. On the other hand, cross-terms are complex in general, and their values

depend on the relative phase between the contributing signals. As such, averaging TFDs over

different antennas enhances the auto-terms, whereas the cross-terms are significantly suppressed

if the spatial correlation between the contributing signals is low.

With the focus on cross-term suppression, we consider a noise-free scenario, where the ith

diagonal element of Dww(t, f), in the presence of L targets, is expressed as

Dwiwi
(t, f) =

L∑
l=1

L∑
k=1

aila
∗
ikDγlγk(t, f), (12)

where ail is the (i, l)th element of A. Averaging the NtNr diagonal elements of Dww(t, f) thus

becomes

D̄ww(t, f) =
1

NtNr

NtNr∑
i=1

Dwiwi
(t, f) =

L∑
l=1

L∑
k=1

βl,kDγlγk(t, f), (13)

where

βl,k =
1

NtNr

NtNr∑
i

aila
∗
ik (14)

is the spatial correlation, defined in the virtual array of NtNr sensors, of the return signals from

targets l and k. Using relationship (4), we can readily express the above result as

βl,k = β
[t]
l,kβ

[r]
l,k, (15)

where

β
[t]
l,k =

1

Nt

[
a
[t]
k

]H
a
[t]
i and β

[r]
l,k =

1

Nr

[
a
[r]
k

]H
a
[r]
i (16)

are, respectively, the spatial correlations of the two return signals defined in the transmit and

receive arrays.



From the above discussion, it is clear that an MIMO radar enjoys significant advantages for

cross-term suppressions. The fact that cross-terms are attenuated by the product of the spatial

correlations defined in both transmit and receive arrays makes MIMO radar very attractive.

Therefore, effective cross-term suppression may be achieved when either the transmitter or the

receiver, or both, has a low spatial correlation.

4.2. Signal TFD Enhancement over Noise

From (3), we can write the signal received at the ith array sensor as

yi(t) = wi(t) + zi(t). (17)

The auto-sensor term TFD of the above signal, which is the ith diagonal element of Dyy, is

expressed as

Dyiyi(t, f) = Dwiwi
(t, f) +Dwizi(t, f) +Dziwi

(t, f) +Dzizi(t, f). (18)

The first term at the RHS in the above expression is the deterministic term, which has been

discussed in detail in the previous subsection. The second and third terms are the cross-terms

between the target signal and the noise, which obviously follow zero-mean complex Gaussian

distributions with their variance independent of the sensor indices. The last term follows the

chi-square distribution.

Averaging the auto-sensor terms over all virtual sensors, we obtain

D̄yy(t, f) =
1

NtNr

NtNr∑
i=1

Dyiyi(t, f) (19)

= D̄ww(t, f) +
1

NtNr

NtNr∑
i=1

Dwizi(t, f) +
1

NtNr

NtNr∑
i=1

Dziwi
(t, f) +

1

NtNr

NtNr∑
i=1

Dzizi(t, f).



Because the noise is independent at each virtual sensor, the second and third terms in the RHS

remain zero-mean complex Gaussian and their variance is reduced by a factor of NtNr. For a

large number of NtNr, the last term can also be considered as complex Gaussian as a result of

the central limit theorem, with mean σ2
n, and its variance is reduced by a factor of NtNr as well.

As a result, the perturbation due to noise reduces as NtNr increases, asymptotically leading to

convergence to the expected value of D̄ww(t, f) + σ2
n as NtNr goes to infinity.

5. Joint DOD and DOA estimations in the time-frequency framework

In bistatic radars, the DOD and DOA information can be synthesized to locate targets. For

multiple targets, the combination of estimated DOD and DOA yields to a pairing ambiguity.

Several techniques have been developed to void or to automatically obtain pairing operation

[5–7]. These approaches, based on ESPRIT, or combined ESPRIT-MUSIC, can be extended

to the time-frequency framework. We consider, as an example, the combined ESPRIT-MUSIC

technique developed in [7] which only requires two decoupled 1D direction finding operations,

where the DOD and DOA are automatically paired. In this section, we extend this technique

into the spatial time-frequency framework. The DODs of the targets are first estimated using the

time-frequency ESPRIT [20] and their DOAs are then obtained using time-frequency MUSIC

[13]. To apply the ESPRIT-based method, both arrays are assumed to be uniform and linear, but

the interelement spacings of the two arrays, respectively, denoted as dt and dr, may differ.

Consider a time-frequency region Ω0 that contains signal returns from L0 ≤ L targets. An

STFD matrix, denoted as Dyy(Ω0), can be obtained through weighted average of the STFD



matrices across region Ω0, i.e.,

Dyy(Ω0) =
∑

(t,f)∈Ω0

w(t, f)Dyy(t, f), (20)

where w(t, f) is the weighting coefficients, which can be chosen to be equal or proportional to

the TFD magnitude. The signal subspace of matrix Dyy(Ω0) corresponds to the L0 target signals

contained in the selected time-frequency region Ω0. In other words, it spans the same subspace

as A0, where A0 = A0,t ⋄A0,r is a NtNr ×L0 submatrix of A that contains the L0 columns of

matrix A, corresponding to the L0 signals included in the selected time-frequency region.

Performing an eigen-decomposition of Dyy(Ω0) and denoting Us,0 as its NtNr × L0 signal

subspace, whereas Un,0 as the NtNr × (NtNr − L0) noise subspacea. Then, Us,0 and A0 are

related by an unknown transformation matrix T as

Us,0 = A0T. (21)

Divide the virtual array into two overlapping subarrays, respectively consisting of the first and

last (Nt− 1)Nr virtual antennas. Denote A
(1)
0,t and A

(2)
0,t as the first and last Nt− 1 rows of A0,t,

and let A(t1)
0 = A

(1)
0,t ⋄A0,r and A

(t2)
0 = A

(2)
0,t ⋄A0,r. Further, denote the averaged STFD matrices

defined in these subarrays as D
(1)
yy(Ω0) and D

(2)
yy(Ω0), respectively. Then, their signal subspaces

respectively relate to A
(t1)
0 and A

(t2)
0 through

U
(1)
s,0 = A

(t1)
0 T, U

(2)
s,0 = A

(t2)
0 T. (22)

A
(t2)
0 and A

(t1)
0 differ due to the antenna position and thus are related by

A
(t2)
0 = A

(t1)
0 Φ[t], (23)



where Φ[t] is a diagonal matrix with diagonal elements [Φ[t]]i,i = exp(j2πdt sin(θi)/λ), i =

1, . . . , L0. Similarly, U(1)
s,0 and U

(2)
s,0 are related by

U
(2)
s,0 = U

(1)
s,0Ψ[t]. (24)

From the above results, Ψ[t] can be obtained from U
(1)
s,0 and U

(2)
s,0. Substituting (23) into (24),

we obtain

U
(1)
s,0 = A

(t1)
0 T, U

(2)
s,0 = A

(t1)
0 Φ[t]T. (25)

Therefore, it is concluded from (24) and (25) that Ψ[t] and Φ[t] are related by Ψ[t] = T−1Φ[t]T,

that is, Φ[t] can be obtained as the eigenvalues of Ψ[t]. As such, the DODs θi can be obtained

for i = 1, . . . , L0.

To estimate the DOAs after DODs are obtained, the ESPRIT-MUSIC method is based upon

the fact that the noise subspace and the steering vector of the virtual array are orthogonal [7]. In

the time-frequency framework, this leads to a time-frequency MUSIC based approach for each

estimated θi, i = 1, . . . , L0, i.e., estimating the paired ϕi by finding the peaks of the following

pseudo spatial spectrum

f(ϕ) =
1

aH
r (ϕ)[at(θi)⊗ INr ]

HUn,0UH
n,0[at(θi)⊗ INr ]ar(ϕ)

. (26)

When the receive array is uniform linear, for which the receive steering vector can be expressed

as a polynomial function of z = exp(−j2πdr sin(ϕ)/λ), i.e.,

ar(ϕ) = [1, e−
j2πdr

λ
sin(ϕ), . . . , e−

j2π(Nr−1)dr
λ

sin(ϕ)]T = [1, z, . . . , zNr−1]T , (27)

the paired DOA ϕi can be solved using the simpler time-frequency root-MUSIC approach that

finds the root inside and closest to the unit circle of the following polynomial

aH
r (ϕ)[at(θi)⊗ INr ]

HUn,0U
H
n,0[at(θi)⊗ INr ]ar(ϕ) = 0. (28)



For the directions of other L − L0 targets, the same procedure can be carried out in different

time-frequency regions where these signals are included.

By exploiting target selection/discrimination through a time-frequency region selection, signif-

icant performance improvement can be achieved, particularly in the challenging situations such

that multiple targets are closely spaced in angle but are separable in the time-frequency domain.

Specifically, when a time-frequency region with a single target present can be identified, the

DOD and DOA can be estimated with simple phase examinations, and no pairing operation is

needed.

6. Simulation results

Consider a scenario in which two moving targets appear in a specific range bin of interest. The

bistatic radar consists of a linear transmit array consisting of Nt = 4 antennas and a linear

receive array consisting of Nr = 6 antennas. The transmit and receive arrays are assumed to be

distantly separated. Half wavelength interelement spacing is set for both transmit and receive

arrays. The waveforms transmitted from different transmit antennas are considered orthogonal,

and the cross-correlation between different transmit waveforms is ignored. The total number of

slow-time samples is 256 for each waveform. The RCS is considered constant over the entire

256 slow-time samples. The noise at each virtual sensor are assumed to be i.i.d., and the input

SNR of all the return signals are assumed to be identical.

Two different examples are simulated in this section. In the first example, the two targets

have close DODs (10o and 15o) observed at the transmitter, whereas their DOAs observed at the

receiver have a larger separation (5o and 20o). The parameters of the targets are summarized in



Table 1. The increasing Doppler signature of each target indicates the target movement towards

the transmit and receive arrays in a way that the sum two-way slant range decreases over time.

In Figure 1a we depict the PWVD of the signal corresponding to the first receive antenna

and the waveform transmitted from the first transmit antenna. The PWVD averaged over all the

NtNr = 24 transmit and receive antenna combinations is shown in Figure 1b. The input SNR in

this plot is −12 dB. To reduce the sidelobe interference, a Hamming window of length H = 127

is used in computing the PWVD. It is evident that, while the TFD auto-terms of the signals

are difficult to be recognized in the single transmit-receive antenna pair case because of the

presence of a high level of noise, they become clearly identifiable in the sensor averaged TFD

due to substantial mitigation of the noise as well as the cross-terms. As discussed in Section

5, cross-terms in the averaged TFD are attenuated according to the varying level of spatial

correlation between the respective contributing signal components, whereas the reduction of the

noise primarily depends on the number of virtual sensors. The latter, in our case, is the product

of the number of transmit antennas and the number of receive antennas. In this example, the

spatial correlation coefficient has a high value of 0.956 at the transmit array and a low value

of 0.288 at the receive array, resulting in an overall spatial correlation coefficient of the MIMO

array at a low level of 0.275 that results in good cross-term suppression. It is noted that, because

of the significant cross-term suppression, owing to spatial domain filtering, the two close chirp

waveforms can be clearly separated in the time-frequency domain for IF estimation and target

discrimination.

In Figure 2, the root-mean-square error (RMSE) of the DOD and DOA estimation results

of the first target are compared for three different scenarios, namely, joint ESPRIT-MUSIC



without the use of time-frequency analysis, time-frequency ESPRIT-MUSIC with all three signals

selected for consideration, and time-frequency ESPRIT-MUSIC that only considers the signal

corresponding to the first target. The results are averaged over 100 independent trials. When both

signals are selected in the time-frequency ESPRIT-MUSIC, the performance is almost the same

as the conventional ESPRIT-MUSIC when the input SNR is moderate or high. While the time-

frequency ESPRIT-MUSIC benefits from the SNR enhancement, the performance is nevertheless

affected by colored noise due to the selection of time-frequency regions. As has been the case in

time-frequency DOA estimation techniques [15, 19], the advantage of utilizing time-frequency

analysis becomes more pronounced in the underlying example in low SNR scenarios, where the

higher-order error terms becomes dominant in the conventional ESPRIT-MUSIC technique. It is

interesting to note that, because of the wider separations of the targets in terms of their DOAs,

good DOD estimation performance is achieved despite of the small angular separation of the

two DODs. Further, by selecting only the first target for joint DOD/DOA estimation through

the time-frequency domain discriminations, the DOA estimation performance is substantially

improved, whereas the improvement of the DOD estimation performance is fairly modest.

In the second example, the two targets have close DODs (10o and 15o) and close DOAs (15o

and 20o). The parameters of the targets are summarized in Table 2. As seen below, the effect

of cross-terms in this case is more significant. Therefore, we use two signals of larger Doppler

frequency difference so as to avoid the effect of cross-terms in auto-term selections.

In Figure 3a we depict the PWVD of the signal corresponding to the first receive antenna and

the waveform transmitted from the first transmit antenna. The Hamming window of length 127

remains the same as in the previous example. Similar to Figure 1a, the signal time-frequency



signature cannot be recognized in this plot due to the low input SNR. When averaging the PWVD

over all the NtNr = 24 transmit and receive antenna combinations, as shown in Figure 3b, the

auto-terms are significantly enhanced and can be clearly identified in this plot. The difference

between this plot and Figure 1b is also clear in the sense that the residual cross-terms are much

higher. In this example, the spatial correlation coefficient at the transmit array remains 0.956,

whereas that at the receive array becomes 0.903 due to the closer angular separation between the

two DOAs. This sets the overall spatial correlation coefficient of the MIMO array to the high

value of 0.863. To illustrate the effect of cross-terms on signals with close Doppler signature,

Figure 3c plots the averaged PWVD for the chirp signals used in the first example.

In Figure 4, the RMSE of the DOD and DOA estimation results of the first target are

compared for the same three different scenarios. When both signals are selected, the time-

frequency ESPRIT-MUSIC still benefits from the SNR enhancement over low SNR regions.

The performance of both DOD and DOA estimates is significantly improved through target

discrimination by selecting only the first target. This improvement stems from overcoming the

close angular separation of the targets at both the transmitter and receiver sides using time-

frequency signature selections.

7. Conclusions

We have proposed the use of spatial time-frequency distributions (STFDs) for the joint DOD

and DOA estimation of moving targets in a multiple-input multiple-output (MIMO) radar. Time-

frequency analysis was applied to the target nonstationary Doppler data to enable signal en-

hancement and target discrimination. With MIMO configurations, the virtual array provided by



the combination of different transmit and receive antenna pairs yields a significant number of

virtual sensors. The virtually increased aperture empowers the STFD and allows for increased

signal-to-noise ratio (SNR) and cross-term suppression, leading to reliable signal identification

and selection. This, in turn, improves DOD/DOA estimation of weak targets with a low SNR.

Most importantly, it was shown that the capability of discriminating targets with separable

Doppler signatures in the time-frequency domain yields significant performance improvement of

DOD/DOA estimation for targets with close angular separations.
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Endnote

aWhile joint block diagonalization may yield a better solution for subspace estimation from a

set of STFD matrices defined in a region [13], we use weighted time-frequency averaging in

this article for simplicity and intuitive description and implementations.
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Table 1. Signal parameters of Example 1

Start End DOD DOA

freq. freq. (deg) (deg)

Target 1 0.15 0.35 10 5

Target 2 0.17 0.37 15 20

Figure 1. Comparison of PWVD results. (a) Single transmit-receive pair; (b) averaged over all virtual sensor pairs.



Table 2. Signal parameters of Example 2

Start End DOD DOA

freq. freq. (deg) (deg)

Target 1 0.15 0.35 10 15

Target 2 0.18 0.38 15 20

Figure 2. Comparison of RMSE performance. (a) DOD estimation; (b) DOA estimation.

Figure 3. Comparison of PWVD results. (a) Single transmit-receive pair; (b) averaged over all virtual sensor pairs; (c)

averaged PWVD of signals with closer frequency difference of 0.2

Figure 4. Comparison of RMSE performance. (a) DOD estimation; (b) DOA estimation
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